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Radiofrequency waves are widely used for auxiliary heating and current drive 

in fusion plasmas. The design and optimization of such systems is often 

performed using ray-tracing codes, which rely on the geometrical-optics (GO) 

approximation. However, GO is known to fail at wave cutoffs and caustics. To 

accurately model the wave behavior in these regions, more advanced and 

computationally expensive “full-wave” simulations are typically used, but this is 

not strictly necessary. A new, generalized formulation, called metaplectic 

geometrical optics (MGO), has been proposed that reinstates GO near caustics 

[1]. The MGO framework yields an integral representation of the wave field, but

evaluating the corresponding integral in the general case must be done 

numerically. We present a survey of numerical integration methods for MGO, 

including Gaussian quadrature and numerical steepest descent. These methods 

are benchmarked against analytical solutions in special cases when such 

solutions are available.

Abstract

• Modeling electromagnetic (EM) waves is a core aspect of fusion research, 

especially for plasma heating for tokamaks and stellarators. 

• Full-wave EM simulations are computationally expensive, so most 

simulations assume short wavelength Geometrical Optics (GO).

• GO codes can even model mode conversion [2-4], but fail near caustics, 

including cutoffs, where the wave number k goes to 0. 

• A newly developed method, Metaplectic Geometrical Optics (MGO), has 

been developed that evades these issues by relying on a sequence of phase 

space transformations such that the caustics are eliminated in the new 

variables and GO can be reinstated.

Background

• We evaluated all integrals using Gaussian Quadrature (with n ≤ 10), which is 

commonly known for its high accuracy. Gaussian Quadrature operates 

according to the formula:

න
𝑎

𝑏

𝜔 𝑥 𝑓 𝑥 𝑑𝑥 ≈෍

𝑖=1

𝑛

𝑤𝑖𝑓(𝑥𝑖)

where 𝜔 𝑥 is the weight function and 𝑤𝑖 are the eigenvalues of a matrix 

distinct to Gaussian Quadrature.

• Initially we used Legendre weights corresponding to ω=1, and Hermite 

weights, corresponding to ω=𝑒−𝑥𝑖
2
, for both of which the quadrature

weights wi and quadrature points xi are well−known.

• This worked well for simple test functions, but failed for the highly 

oscillatory MGO function.

• To fix this, we applied the Method of Steepest Descent.

• This method uses the fact that in the complex plan, the field oscillations are 

replaced with rapid decrease along certain directions (Steepest Descent 

Paths).

• The integrals along the complex contours were also taken using Gaussian 

Quadrature.

Methodology Results

• Our Steepest Descent-Gaussian Quadrature method has been compared with 

the exact solution for the integral and the GO approximation of this solution. 

• MGO solution: 
Υ 𝑝 exp(−𝑖

2

3
𝑝3)+Υ −𝑝 exp(𝑖

2

3
𝑝3)

2𝜋
.

• Exact Solution:  Ai(-p2).

• GO approximation: 
sin
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Progress in numerical implementation of metaplectic geometrical optics

Quadrature points (red) when 
integrating along the real axis. Paths of 
steepest descent marked by blue lines.

Quadrature points (red) when integrating 
along straight lines corresponding to the 
directions of steepest descent (blue) at a 

saddle point. 

• This version was much more accurate for large |p|. However, as p

decreases, the single-angle rotation method fails due to the incoming and 

outgoing branches approaching the saddle point at different angles.

• A more advanced quadrature method, using Freud-type weight functions 

[6,7] was implemented that integrates on (0,∞) separately on each side 

from the saddle point. Then, the orientations of the incoming and 

outgoing paths may differ. The incoming and outgoing branches are then 

“stitched together”.

• The orientation of the integration paths at small p may not coincide with 

the directions of steepest descent. Therefore, this method selects the 

corresponding valleys by continuity from the large-p case.

• For each branch, the final quadrature formula is:
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where wi are the Freud quadrature weights, θ is the angle of rotation, and x0

is the location of the saddle point.

Evolution of integration contour as |p| 
decreases from 1 to 0 for positive p 

(top) and negative p (bottom).

• One relevant physics phenomena to which MGO is applicable is that of a 

wave incident on a cutoff, which is described by the Airy equation:
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where E(x) is the electric field.

• MGO requires evaluation of integrals of highly oscillatory functions such as:
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where p = 0 corresponds to a cutoff (reflection point).

The intricate pattern of bright lines are 
examples of caustics. Image from 

Wikipedia.
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Illustration of phase space rotations 
used in MGO [5].

Electric field vs. the spatial coordinate: numerical 
results (blue), exact solution Ai(x), and the 

asymptotic solution.
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